MELTING OF A SEMIINFINITELY LARGE BODY
BY AN INTERNAL POINT SOURCE OF HEAT
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The propagation of the melt front in a semiinfinitely large solid body with an internal point
source of heat is analyzed.

An electron beam acting on a material generates in it a heat source whose intensity is maximum at a
certain depth [1, 2] (~10~3 cm for electron energies in the 100-150 keV range). Such a mode of energy
releagse results sometimes in local melting of the solid from inside.

In order to analyze the process of liquefaction and the accompanying changes within a solid body, we
use the model where the total power of the electron beam is released at a point corresponding to maximum
energy generation, Immediately after the source has been turned on, the substances within an infinite-
simally small volume around the origin of coordinates will melt (Fig. 1). The manner in which the inter-
phase boundary propagates is determined from the solution to the Stefan problem

At the interphase boundary {3]

Fig. 1. Schematic
diagram showing the
propagation of the
melt front in a semi-~
infinitely large body.
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where F(a, t) =0 is the equation of the interface,

We solve problem (1)-(6) approximately, considering ([a]/d < 1) the
free surface as the perfurbation source. (The characteristics of the per-
turbations will be discussed later.)

Symmetrical Problem, In the zeroth approximation (condition (6)
omitted) the problem has spherical symmetry and at a time t 3 t, when the
melting rate is much lower than the heating rate, the approximate solution
may be appropriately expressed in terms of the functions [4]
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' T ‘ Disregarding the transient term in the expression for T;, which
96 < estimates have shown to be permissible at t ~ t, and inserting the
P expressions for T, T, into the boundary condition at the interface,
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of time. In dimensionless form this becomes
2
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In order to examine the behavior of x(t) near zero {r < 1, x < 1), we substitute
p=x E=1Vr. (12)
Then (11) becomes
dy 6t ys, - 6 o
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A solution to Eq. (13) exists uniquely at all points £ > 0. At £ =0 the Lipschitz condition is not satis-
fied and, as a result, the solution ¢ = 0 is added here. The Euler method readily yields a solution to (13)
with the initial condition ¢fg=o =0 in the form
3 ., 6 ( 3\ 3 6 3 [ 31\ ¢
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Retaining only the first term in (14) at t « 1 yields, after a change to variables x and 7,
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It is easy to show that formula (15) is identical to the relation derived from the equation of energy balance,
Consequently, the solution to (11) behaves initially in conformity with the characteristics of the melting
process, even though dg/dt is not a small quantity.

At T3 1 we have dx /dr «< 1, i.e., the right-hand side of (11) yx?dx /dT<« 1. Solving Eq. (11) by the

iteration method yields
- —_—
x(,:“'(1/1+ 4_—1>, (16)
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At 7 > 1 the term 4 (1 AT + ydxp_y/dT) becomes much smaller than unity and, accurately down to second-
order terms,

wrl — Vl‘ . (19)

A numerical solution to Eq. (11) with v =1 is shown in Fig. 2 (curve 1) (according'to calculations,
at 7 > 0 the parameter y has almost no effect on the trend of the curve), Curve 2 represents formula (16),
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x : : and curve 3 represenis the quasisteady case. A comparison indi-
, / LAY : cates that the propagation of the melt front at 7 = 1 is governed by
= /‘3/‘/ the transiency of heat conduction. *
L Semiinfinitely Large Body. Imasmuch as energy losses on
phase transformation are negligible or not significant at 7= 1,
it may be assumed that introducing a free surface will affect the
0 - . = - melt front in the same way as the temperature field, i.e., that
. . ' g 1 1 1
Fig. 3. Location of the interphase T, ~ ey (—;— + v — ———) + T (20)
boundary, with a distributed heat 7 y 7 —drd cosb + 47 7
source, as a function of time: r /b Tom Ty + (Tp— ﬂ( 1 )erfc( r("l)) 21
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At the melt front, moreover,
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or, what is equivalent,
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At r/2d < 1 expression (23) resolves into Legendre polynomials and becomes
ad r \ntl
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Since f'(r) < 1, hence r as a function of n is caleulated by iteration:
ro="1, (25)
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Inserting (20), (21), and (22) into the condition of heat balance at a moving boundary, and integrating
with respect to 1/2d = 3 over the interface accurately down to second-~order terms, we obtain an equation

iny=n/r:

1__,,___]%_ (1425 + 38 = vt S (1 + 4 + 109, (28)

Here, as also in (11), y, =X, with y dy /dr being much smaller than 1 /¥T. The result of subsequent itera-
tion with a free surface introduced here is, unlike (17),

1/1+4[—-—(1+2s)+v o] 1

Y= . 29
L atem+y ]
|7
Simple transformations will reduce expression (29) to the form
U = Y% (1 — 4) + B, (30)
where ' N
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*Ag this article was nearing completion, the authors learned about the study in [5] concerning the kinetics
of liquefaction due to a point source on the surface, The authors of (9], using the solution given there in
terms of a series in (r—a(t)), disregarded all terms except the zeroth one in the boundary condition at in-
finity and, therefore, obtained the solution for a(t) in the quasisteady approximation.
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Equation (30) indicates clearly that y, increases with time someéwhat slower than x, while the correction
to x decreases. Taking info account that n, = 4, we obtain for the radius of the melt zone

rn=a(l+p—A4) -+ B. (33)

Relation (33) and subsequent iterations indicate the propagation characteristics of the melt front in
the presence of a free surface at 7 > 1 and with g < 1.

Effect of Source Distribution. A point source represents a convenient idealization of a practically
realizable lumped source whose intensity may have, for example, the following space distribution:

u(r) :-g—exp{-—i-}. (34)

Normalization yields B = q/47b?.

Unlike with a point source, melting due to a volume source begins not immediately after turn-on but
some time after the maximum temperature within the given region has reached the melting point, For the
problem with spherical symmetry and with the source (34) we have

nt Y
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Equating Tyax to the melting point, we readily find from (35) the instant of time at which melting will be-
gin. The temperature field at the instant when Ty, 4 (t) = Ty, represents the initial condition for the melt-
ing problem. Disregarding the space variation of the initial temperature (which is reasonable because, in
the final analysis, many process characteristics depend on T [6]), we obtain condition (7) with the point
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or in dimensionless form
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The dimensionless parameter T /b determines the effect of source distribution on the characteristics of the
melting process, When the ratio of maximum melt radius with an internal source to the dimension of the
zone of intensive heat generation remains r/b > 1, then it may be regarded as a point curve. Forr/b £ 1the

source distribution is taken into account.
. :

Numerical solutions to Eq. (38) are shown in Fig. 3 for r/b =8, 4, and 2,

Stress Field. In order to estimate the time till spillage occurs, which depends on the pressure in-
side the melt and on the dimensions of the plasticity zone, it is necessary to determine the stress field
produced in the solid body by the nonuniform temperature field [8] as well as by the difference between
specific volumes in the liquid state and in the solid state respectively [7]. We will analyze the problem
under the following assumptions:

1, The melt boundary propagates at a velocity much lower than the velocity of sound in the given
substance; ’

2. the temperature field is quasisteady;
T =Ta®)r;
3. the plastic properties of the substance are described by an ideally plastic body with the yield point
depending on the temperature, ’

As a consequence of spherical symmetry, shear strains g, @ £00> Erg and tangential stresses are
equal to zero, while strains gy = £gg = € and 0y = 0gg = Tgp-.

381



The *radial" component of the stress tensor o}, and the "angular® component of the strain tensor both

satisfy the boundary condition
' 6, =0 at r-oo,
6, =—p a r=aq, (39)
Cg=¢—kp a r=a.

Using the équations of equilibrium and continuity as well as the known relations between stress and strain
tensors for the elastic zone and the plastic zone respectively, we obtain the following expressions for the
pressure in the liquid and for the radius of the plastic zone

R .
2 R 3 o, aGTna 14w
p=_§—0’s[l—+—6'?75‘_;~dr+3 GSRR . 1 —v s (40)
| 2 4 14+v ay | 3 2
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where o'g = 0g(R).

As in the case considered in [7], the pressure in the liquid is independent of the melt radius (the re-
sult of a self-adjoint problem).

If the yield point og near the melting point is a following function of the temperature
o, = 0! Tu—T
T
(the constant a"s being determined from the test curve in [10]), then estimates indicate that the pressure is
approximately equal to the yield point under normal conditions in a melt and that the radius of the plasticity
zone is almost equal to the radius of the melt zone. For example, the pressure in an aluminum melt is p
~ 0.80°10%atm and R /g ~ 1.1

It is to be noted that all these results are valid for heat sources whose intensity is limited by the
conditionTt/d g 1. WhenT/d > 1, i.e., when the maximum melt radius is much greater than the distance
from the point of peak energy release to the surface, then the assumption concerning the perturbation of
melt isotherms is incorrect because, as the melt front approaches the surface, v dx/dr3 1 /.

NOTATION

is the temperature, °K;

is the specific heat, cal/g-°C;

is the thermal diffusivity, cm?/sec;

is the thermal conductivity, cal/cm -sec-°C;

is the heat generation rate, cal/sec;

is the radius vector of a local point within the analyzed region;

is the surface of interphase boundary;

is the free plane surface;

is the distance from the free surface, along a normal;

is the three-dimensional Laplace operator;

is the gradient operator;

is the distance from free surface to point of maximum energy release;
is the maximum radius of melt zone, with a given power g of a constant
point source;

are the characteristic times associated with the transiency in the extern-
al problem of heat conduction and a moving interphase boundary;

is the dimensionless radius and time;

is the dimensionless parameter;
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T mrw, T = ampLrd /g

x=r/F, T=t/U
1/v =%/t =(Tm~Type /mL

is the parameter of the melt isotherm, cm;

n

b is the parameter characterizing the source distribution;

r, o, 0 are the spherical coordinates;

P is the pressure in the melt;

3ky, 3kg are the volume compressibility of liquid and of solid respectively;
Og = 0g(T) is the yield point of the substance;
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is the radius of plasticity zone;

is the shear modulus;

is the Poisson ratio;

is the linear expansivity of the solid;

is the change in the specific volume of the substance during melting.
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