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The propagation of the melt  front in a semiinfini tely large solid body with an internal  point 
source of heat is analyzed. 

An electron beam acting on a mater ia l  generates  in it a heat source whose intensity is maximum at a 
cer ta in  depth [1, 2] (~ 10 -~ cm for electron energies  in the 100-150 k e y  range). Such a mode of energy 
re lease  resul ts  somet imes  in local melting of the solid f rom inside. 

In order  to analyze the process  of liquefaction and the accompanying changes within a solid body, we 
use the model where the total power of the electron beam is re leased at a point corresponding to maximum 
energy generat ion.  Immediately af ter  the source has been turned on, the substances within an infinite- 
s imal ly  smal l  volume around the origin of coordinates will mel t  (Fig. 1). The manner  in which the inter-  
phase boundary propagates is determined f rom the solution to the Stefan problem 

1 OT, .VZTx = --  ~ 6 (r), (1) 
gl Ot ~1 

1 OT~ V2T 2 = O, (2) 
z~ Ot 

T~(r, 0) = T o, (3) 

r x (a, t) ---- T~ (a, t) -:- Tm, (4) 

vT~ (o0, 0 = 0, (5) 

OT2oz ~-0 = 0. (6) 

At the interphase boundary [3] 

Fig. 1. Schematic 
d iagram showing the 
propagation of the 
melt  front in a semi-  
infinitely large body. 

�9 OF 
pL ~ + (Z~vT 2 - -  L~vT1, vF), = 0, (7) 

where F(a, t) = 0 is the equation of the interface.  

We solve problem (1)-(6) approximately, considering ([a l /d  < 1) the 
free surface as the perturbat ion source.  (The charac ter i s t ics  of the pe r -  
turbations will be discussed later.) 

Symmetr ica l  Problem.  In the zeroth approximation (condition (6) 
omitted) the problem has spherical  symmet ry  and at a t ime t >~ t,  when the 
melting rate is much lower than the heating rate, the approximate solution 
may be appropriately expressed in t e rms  of the functions [4] 

T I _  4n~'lq (, rl al ) + ~ _  { 2 a ( T m - T ~  4:~,:} (8). 
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Dis rega rd ing  the t r ans ien t  t e r m  in the e x p r e s s i o n  for  T1, which 
e s t i m a t e s  have shown to be p e r m i s s i b l e  at t ~ t, and inse r t ing  the 
exp re s s ions  for  Ti, T 2 into the boundary condition at the in ter face ,  

we obtain 

q L- T m - -  To L T~n - -  TO -- pL ~ 
4~a 2 a U~-~  c/t 

o r  

Fig . . 2 .  Locat ion of the i n t e r -  a 2 = 4 : L a  ~ p  da 
phase  boundary,  as a function q - -  4n)~ (Tm - -  To) a - -  4 ~  (Tm - -  To) ] / ~  . - -~  �9 (10) 

of t ime .  In d imens ion less  f o r m  this becomes  

l - - x - -  x ~ dx (11) 
V ~  = vx~ d--~ 

In o rde r  to examine the behavior  of x(t) nea r  ze ro  (~-<< 1, x << 1), we subst i tute  

Then (11) becomes  

* = x  ", ~ = V ~  (12) 

d~ 6~ ( I - -~ ' /~ )  �9 6 ,~2/3 (13) 

A solution to Eq.  (13) ex is t s  uniquely at all  points ~ > 0. At ~ = 0 the Lipschi tz  condition is  not s a t i s -  
fied and, as a resul t ,  the solution r = 0 is added he re .  The Eu le r  method read i ly  yields  a solution to (13) 
with the init ial  condition r =0 = 0 in the f o r m  

~ = ~ 3  ~._t_~_,\_~_) 6 ( 3  ~/3 3_7_~,,3 67 83 ( ~ - )  ' / 3 ~ s / 3 §  (14) 

Retaining only the f i r s t  t e r m  in (14) at t << 1 yields ,  a f t e r  a change to va r i aMes  x and ~-, 

It is easy  to show that fo rmula  (15) is identical  to the re la t ion  der ived  f r o m  the equation of ene rgy  ba lance .  
Consequently,  the solution to (11) behaves  ini t ial ly in conformi ty  with the c h a r a c t e r i s t i c s  of the mel t ing  
p r o c e s s ,  even though d a / d t  is not a smal l  quantity. 

i .e. ,  the r ight -hand side of (11) 7x2dx/d~'<< 1. Solving Eq. (11) by the At �9 >~ 1 we have dx/dT << 1, 
i t e ra t ion  method yields  

X 0 - -  

( / , 4  ) 
~/~ 1 i 1 ( 1 6 )  

2 1 ~ ' 

V F1-+-4 ( 1-77-1 ?dxo/ __I  
v �9 + dT / 

X 1 dx ~ �9 
(17) 

V- ( ) 1 7dx"-a - -  1 
1 + 4  - - ~ - - - F  d1: (18) 

2 - - ~  + 7  dT ' 

At 7 >> 1 the t e r m  4 (1/V-I- + y d x n _ i / &  ) becomes  much s m a l l e r  than unity and, a ccu ra t e ly  down to second-  
o r d e r  t e r m s ,  

x ~  1 - -  1 '(19) 

A n u m e r i c a l  solut ion to Eq.  (11) with y = 1 is shown in Fig. 2 (curve 1) (according t o  calculat ions,  
at 1- > 0 the p a r a m e t e r  y has  a l m o s t  no effect  on the t rend  of the curve) .  Curve 2 r e p r e s e n t s  f o r m u l a  (16), 
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Fig. 3. Locat ion of the interphase 
boundary, with a dis t r ibuted heat  
source ,  as a function of t ime: r / b  
= 8 ( 1 ) ,  4 (2 ) ,  2 (3). 

or ,  what is  equivalent,  

and curve 3 r ep re sen t s  the quasis teady ease .  A compar i son  indi-  
cates  that the propagat ion of the mel t  front at T _~ 1 is governed by 

t h e  t rans iency  of heat conduction.* 

Semiinfini tely Large Body. Inasmuch as energy losses  on 
phase t rans format ion  a re  negligible or  not significant at T ~ 1, 
it may be assumed that introducing a f ree  surface  will affect the 
mel t  front in the same way as the t empera tu re  field, i .e. ,  that 

�89 r,  + Tin, (20) 
....~ ~ r 2 - -  4rd  cos 0 + 4d ~ 

Vrr ~'-- 4rdeos O + k 2 V x t  

At the mel t  front,  moreover ,  

1 1 1 . . . .  (22) 
n r + V r~__ 4rd cos 0 + 4d~ 

( r ) 
r = ~  1 +  V .  r 4rd  cos O + 4d  ~- . 

At r / 2 d  < 1 express ion  (23) reso lves  into Legendre  polynomials and becomes  

r = ~l 1 +  2d  ] 

(23) 

(24) 

Since f ' ( r)  < 1, hence r as a function of ~? is calculated by i terat ion:  

ro = ,1, (25) 

r , = ~ ( l +  ~ d ) ,  (26) 

I +  ~ - ~ +  - ~  ( l + c o s 0 )  . (27) 

Inser t ing (20), (21), and (22) into the condition of heat  balance at a moving boundary, and integrating 
with r e spec t  to ~/2d = 3 over  the in ter face  accura te ly  down to s econd-o rde r  t e rms ,  we obtain an equation 
in y =~Ir: 

d y  (1 + 4[$ + 10~2). (28) 1 - u -  (I + 2p + 31~') = ~ r  

Here ,  as also in (11), Y0 = x0 with T dy/d~" being much sma l l e r  than 1/r The resul t  of subsequent i t e ra -  
tion with a f ree  sur face  introduced he re  is, unlike (17), 

Yx = 1 + 4 ~ ~ (29) 
2 (1 + 2p) + v -~-j 

Simple t rans format ions  will reduce  express ion  (29) to the fo rm 

(30) 

(31) 

(32) 

where  

y ,  = yo(1 - -  A) + B, 

d~ / I +  4/l/~- 

dz 
B =  

1 + 4/V'~ 

*As this a r t ic le  was near ing completion, the authors  learned about the study in [5] concerning the kinetics 
of l iquefaction due to a point source  on the sur face .  The authors  of [9], using the solution given there  in 
t e r m s  of a s e r i e s  in ( r - a ( t ) ) ,  d i s regarded  all t e rm s  except  the ze ro th  one in the boundary condition at in-  
finity and, therefore ,  obtained the solution for  a(t) in the quasisteady approximation.  
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Equation (30) indicates  c l ea r ly  that  Yl i n c r e a s e s  with t ime somewhat  s lower  than x, while the co r r ec t i on  
to x d e c r e a s e s .  Taking into account that ~?0 = a, we obtain for  the radius  of the m e l t  zone 

r~ = a(1 -{- [8 - -  A) 4,- B. (33) 

Relation (33) and subsequent iterations indicate the propagation characteristics of the melt front in 

the presence of a free surface at "r > 1 and with fl << I. 

Effect of Source Distribution. A point source represents a convenient idealization of a practically 
realizable lumped source whose intensity may have, for example, the following space distribution: 

B exp { - -  + } .  (34) u(r)= ---; 

Normal iza t ion  yields  ]3 = q/47rb 2. 

Unlike with a point source ,  mel t ing due to a volume source  begins not immedia t e ly  a f te r  tu rn -on  but 
some  t ime a f te r  the m a x i m u m  t e m p e r a t u r e  within the given region has reached  the mel t ing  point.  For  the 
p r o b l e m  with spher i ca l  s y m m e t r y  and with the source  (34) we have 

Tmax : T~=o : ~ 1 - -  exp -~-  erfc V T~-) J -k To. (35) 

Equating T m a  x to the melt ing point, we readi ly  find f r o m  (35) the instant  of t ime at which mel t ing  will be-  
gin. The t e m p e r a t u r e  field at the instant when Tmax( t  ) = T m r e p r e s e n t s  the init ial  condition for  the m e l t -  
ing p rob l em.  Dis regard ing  the space  va r ia t ion  of the initial  t e m p e r a t u r e  (which is r easonab le  because ,  in 
the final ana lys is ,  many p r o c e s s  c h a r a c t e r i s t i c s  depend on T o [6]), we obtain condition (7) with the point 
sou rce  (34) as 

el 4~-a~ I - -  exp 

(Tin--.T0) ~ (Tin - -  T~ = pL d_%a 
~/~• a dt 

(36) 

or  in d imens ion less  f o r m  

1 - -exp  - - -b - -X  - - - ~ - x e x p  - - - b - X  exp - b ~  erfc u - - x  ]/-~ -- ?x2 d-~- 

When r / b ~ 7  > 1, 
b 

and re la t ion  (37) becomes  

1 - -  exp.  - . _ - -  O x ~ exp - -  -b- x - x ] /~  d-~" 

The d imens ion less  p a r a m e t e r  ~ / b  d e t e r m i n e s  the effect  of souree  dis t r ibut ion on the c h a r a c t e r i s t i c s  of the 
mel t ing  p r o c e s s .  When the ra t io  of m a x i m u m  mel t  radius  with an in ternal  source  to the d imens ion  of the 
zone of intensive heat genera t ion r e m a i n s  r / b  >> 1, then it may be r ega rded  as a point curve .  F o r r / b  ( 1 the 
source  dis t r ibut ion is taken into aeeount.  

Numer i ca l  solutions to Eq.  (38) a re  shown in Fig. 3 for  ~ /b  = 8, 4, and 2. 

S t r e s s  Field_. in o rde r  to e s t ima te  the t ime till spi l lage occurs ,  which depends on the p r e s s u r e  in-  
side the mel t  and on the d imens ions  of the p las t ic i ty  zone, it is n e c e s s a r y  to de t e rmine  the s t r e s s  field 
produced in the solid body by the nonuniform t e m p e r a t u r e  field [8] as well  as by the d i f ference  between 
speei f ie  vo lumes  in the liquid s ta te  and in the solid s ta te  r e spec t ive ly  [7]. We will analyze the p rob l em 
under  the following assumpt ions :  

1. The mel t  boundary p ropaga tes  at a ve loci ty  much lower  than the veloci ty  of sound in the given 
substance;  

2. the t e m p e r a t u r e  field is quas is teady;  
T Tma (t)/r; 

3. the p las t ic  p r o p e r t i e s  of the subs tance  a re  desc r ibed  by an ideal ly  p las t ic  body with the yield point 
depending on the t e m p e r a t u r e .  

As a consequence of sphe r i ca l  s y m m e t r y ,  shea r  s t r a in s  C r ~  ~q~0, ~r0 and tangent ia l  s t r e s s e s  a re  
equal to zero ,  while s t r a in s  Cq~q~ = ~00 = r and crq~0 = or00 = o-q~. 
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The wradial" component  of the s t r e s s  t ensor  a r and the wangular w component  of the s t r a i n  t ensor  both 
sa t i s fy  the boundary condition 

~r ---- 0 atl : r - , - c o ,  

f i r  ~--- - - P  a t  r : a, (39) 

e~ = eo - -  k~p at r = a. 

Using the equations of equilibrium and continuity as well as the known relations between stress and strain 
tensors for the elastic zone and the plastic zone respectively, we obtain the following expressions for the 
pressure in the liquid and for the radius of the plastic zone 

i 

2 R r dr -t- 3 �9 (40) p =  I + o T  1 - ,  " 
a 

R a 1 "-kk,  [ 2_2(~n_l_ 4 a a T m  l--I-v a - 4 - ( k l - - k , ) p = e  0 3 aT m - - 1  (41) 
s 3 �9 R ' , 

where O~s = (~s(R). 

As in the case  cons idered  in [7], the p r e s s u r e  in the liquid is independent of the me l t  radius  (the r e -  
sul t  of a se l f -ad jo in t  p rob lem) .  

If the yield point o" s nea r  the mel t ing point is a following function of the t e m p e r a t u r e  

 =o0 r a--r 
T 

(the constant  a~ being de te rmined  f rom the t es t  curve  in [10]), then e s t i m a t e s  indicate that the p r e s s u r e  is 
app rox ima te ly  equal  to the yield point under  n o r m a l  conditions in a mel t  and that the radius  of the p las t ic i ty  
zone is a lmos t  equal to the radius  of the mel t  zone.  For  example ,  the p r e s s u r e  in an a luminum mel t  is p 

0.80 "104 a tm and R / a  ~ 1 .1  

It is to be noted that all  these  r e su l t s  a re  valid fo r  heat  sources  whose intensi ty is l imited by the 
e o n d i t i o n u  1. When ~/8->> 1, i .e.,  when the m a x i m u m  mel t  radius  is much g r e a t e r  than the dis tance 
f r o m  the point of peak energy  r e l e a s e  to the sur face ,  then the assumpt ion  concerning the pe r tu rba t ion  of 
me l t  i s o t h e r m s  is i n c o r r e c t  because,  as the me l t  f ront  approaches  the sur face ,  7 d x / d r  >e 1 / ~ .  

T 
C 

). 

q 
r 

s 

Z 
Z 

V 2 

V 
d 
F-= q/4~r~.(Tm--To) 

~-=-~2/rr~ ' t-- 1 = 4rrpL~3/q 

x = r / Y ,  ~" = t / e -  

1/Y = tl/t = (Wm-To)c/IrL 

b 
r,  ~o, 0 

P 
3k[, 3k s 
o- s = (rs(T) 

NOTATION 

is the t empe ra tu r e ,  ~ 
m the specif ic  heat, c a l / g -  ~ 
is the t he rma l  diffusivity,  cm2/sec ;  
is the t he rma l  conductivity,  c a l / c m  . s e c - ~  
m the heat  genera t ion  rate ,  c a l / s e e ;  
m the radius  vec to r  of a local  point within the analyzed region; 
is the su r face  of in te rphase  boundary; 
m the f ree  plane su r face ;  
is  the dis tance f r o m  the f ree  sur face ,  along a no rmal ;  
is the th ree -d imens iona l  Laplace ope ra to r ;  
is the gradient  ope ra to r ;  
is the dis tance f r o m  f ree  su r face  to point of m a x i m u m  energy  r e l ea se ;  
is the m a x i m u m  radius  of mel t  zone, with a given power  q of a constant  
point source ;  
a re  the c h a r a c t e r i s t i c  t imes  assoc ia ted  with the t r ans iency  in the ex t e rn -  
al p r o b l e m  of heat  conduction and a moving in terphase  boundary;  
is the d imens ion less  radius  and t ime;  
is  the d imens ion less  p a r a m e t e r ;  
is  the p a r a m e t e r  of the me l t  i so the rm,  era; 
is the p a r a m e t e r  cha rac t e r i z ing  the source  dis t r ibut ion;  
a re  the spher ica l  coordina tes ;  
is the p r e s s u r e  in the mel t ;  
a re  the volume compres s ib i l i t y  of liquid and of solid respec t ive ly ;  
is the yield point of the substance;  
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is the radius of plasticity zone; 
is the shear modulus; 
is the Poisson ratio; 
is the linear expansivity of the solid; 
is the change in the specific volume of the substance during melting. 
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